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Abslract. Among the analytic studies on runaway phenomena the most sophisticated 
approach to solving the Fokker-Planck equation is to divide the momentum space into five 
distinct regions with appropriate matching between them: various expansions of the 
distribution function are valid in different regions. However, the solution for two of the five 
expansions has not yet been completed. In this paper, a pair of recursive relations is 
established to solve the Fokker-Planck equation for a relativistic plasma in the runaway 
region. Starting from the available asymptotic solution, a representation of the distribution 
function may be obtained by iteration. The application of this technique to the non- 
relativistic problem is also treated. 

1. Introduction 

Runaway electrons are a basic ingredient of hot toroidal plasmas. Their presence has a 
significant effect on the tokamak operation. Understanding of the runaway behaviour 
is thus of practical importance. A recent review of the numerous experimental and 
theoretical studies was published by Knoepfel and Spong (1979) with an extensive 
bibliography of 189 references. 

It is well known that in a plasma subject to an external force (such as an electric 
field), electrons with velocities higher than the critical velocity go over to a state of 
continuous acceleration since their dynamic friction is less than the force exerted by the 
electric field. This property of a plasma leads to distortions in the electron distribution 
function away from a Maxwellian at energies a few times thermal. 

One of the earliest analytic works on the runaway problem was due to Dreicer 
(1959,1960). The approach of Dreicer and the other authors cited in the references is 
to solve the electron Fokker-Planck equation to determine the higher-energy portion 
of the electron distribution function. Among these contributions, the most consistent 
and rigorous treatment of this problem has been given by Kruskal and Bernstein (1963). 
They divided the momentum space into five distinct regions with appropriate matching 
between them: various expansions off or In f are valid in different regions. As a result 
their treatment did not contain the deficiencies of other theories, but they did not 
complete the solution for two of the five expansions. Although the theory is 
incomplete, it is significant in the sense of being the first formal approach to the 
problem, involving no ad hoc assumption about the distribution function. This 
approach has been extended by Cohen (1976) to the multiply ionised, multiple-species 
plasma, and generalised by Connor and Hastie (1975) to the relativistic plasma. 

Kruskal and Bernstein (1964) also treated the simplified model of an ideal Lorentz 
plasma, in which electrons experience Coulomb interaction only with infinitely massive 
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ions. They have worked out a pair of recursive relations, from which a representation of 
the distribution function may be obtained by iteration. In the present paper we shall 
generalise this technique to solve the runaway region for the general case of a relativistic 
plasma, and discuss its reduction to the non-relativistic problem. 

2. General theory 

Let us start with the equation derived from the suprathermal relativistic Fokker-Planck 
equation by Connor and Hastie (1975) for the runaway region (q > qc), namely, 

where f denotes the electron distribution function in zeroth approximation, q is the 
magnitude of the normalised momentum defined as p/(moc), y the cosine of the angle 
measured from the vector -E, y the relativistic gamma factor, [ the parameter defined 
as &l+Zcfp), Zen being the effective charge number for ions, T the runaway parameter 
defined as 47rnp3 In A/(moc2E), and qc the critical momentum given by 4% = q/( l -  q) .  
Connor and Hastie (1975) have found an approximate solution for the limiting case of 
q > > l a n d y = l :  

1 1 q  1-y2 
f = 5 ex€( - 4 --)a 

Integrating equation (2.1) over y = -1 to 1, we have 

which yields 

Define 

P(p)  = I@ (q2x - w2)f dx, (2.4) 

where P(-1) = 0 and P(l) = C. If we integrate equation (2.1) with respect to p, we 
obtain 

-1 

(2.5) 

where the parameter K is defined as q2/(vly). Solvingequation (2.5) forf as a function 
of y, we have 

where yo = q( y/q)' is chosen as the lower limit, while fo denotes the value of f at 
y = yo. Note that y = yo(q) divides the momentum space into two separate domains: 
the runaway source exists only in the domain y > yo. 
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Substituting expression (2.6) into equation (2.3), we obtain an equation for f o  as 
follows : 

Gfo+H = q-'P(l), (2.7) 

where 

G = ( q / ~ ) e - " ~ ~ [ ( l - p ~ - ~ - ~ ) e ~ + ( l + p ~ + ~ - ~ ) e - ~ ] ,  

We shall examine in the following whether the recursive formulae (2.6) and (2.7) 
may be used to attain a more accurate solution by iteration when an approximate 
solution such as expression (2.2) is available. For very large q, from the definitions 

K = d(775) - o(q-l), Po = 77 +O(q-7, (2.8) 

and the S sequence may be expressed as (Kea and Teodorescu 1974) 

S ( S )  = (~/2?r)' / '  exp(-W),  (2.9) 

where s is defined by s2 = 2(x - 77). In this approximation, expression (2.6) may be 
written as 

(2.10) 

where the first term in the square bracket is very small. That is to say, in equation (2.6) 
the second term on the right-hand side dominates the integral term, which indicates that 
formula (2.6) is suitable for iteration. 

3. Reduction to non-relativistic case 

Considering multiply ionised, multiple-species plasmas, Cohen (1976) has derived an 
equation for the non-relativistic case valid in the runaway region as follows: 

(3.1) 

where w denotes the electron velocity normalised with respect to the critical speed. He 
also found an approximate solution for the limiting case of w >> 1 and p = 1: 

If we set both y and 7 to unity and replace q by w, equation (2.1) is then reduced to 
equation (3.1) exactly. Thus the method developed in 0 2 may be directly applied to the 
non-relativistic case. In this case, expression (2.4) becomes simply 

P ( p )  = j p  (w'x - 1)f dx, 
-1 

(3.3) 
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while the parameters K = w 2 / t  and po= w-'. Using equations (2.6) and (2.7), the 
recursive relations may be expressed as 

(3.4) 

and f o ( w )  may be determined from 

Gfo + H = P(1), (3.5) 
where 

4. Concluding remarks 

In § 2, we have derived recursive formulae for a relativistic plasma in the runaway 
region (region V according to Connor and Hastie (1975)). A more accurate solution of 
the electron distribution function may be obtained by an iterative process, starting from 
the available asymptotic solution. The analysis for large q indicates that the formulae 
are suitable for iteration. The reduction of these recursive relations to the non- 
relativistic case was discussed in $3. 
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